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Summary

Constitutive equations are derived for the mechanical behavior of rubbery polymers
at finite strains. The model is based on the concept of rigid-rod networks, where
breakage of chains is treated as bond scission. Adjustable parameters in the stress-
strain relations are found by fitting observations in tensile tests for ethylene-octene
copolymers. It is revealed that the constitutive equations correctly describe stress-
strain curves up to the break points. Young's modulus and the critical strength per
bond monotonically decrease with temperature and increase with molecular weight.

Introduction

This study deals with the isothermal mechanical behavior and ultimate strength of
elastomers. Modeling the viscoelastic response and fracture of rubbery polymers has
attracted substantial attention in the past half a century, which may be explained by
a wide range of industrial applications of rubbers (1-3). Despite a number of stud-
ies concerned with either of these two subjects separately, it is difficult to mention
a theory that establishes correlations between the stress-strain response and failure
at the micro-level. A gap between these areas may be ascribed to the difference in
basic concepts employed in the analysis of constitutive equations, on the one hand,
and fracture of polymers, on the other. Conventional theories of rubber elasticity are
grounded on the hypothesis that macromolecules are composed of so large numbers of
strands that the mechanical energy of a chain is negligible compared to its configura-
tional entropy. On the contrary, traditional approaches in fracture mechanics affiliate
the breakage point with an instant when the essential work (4) (associated with the
strain energy of chains) reaches some critical value (5-7).

This note concentrates on a correspondence between the mechanical response ob-
served in tensile tests and the elongation to break for linear polymers. A polymer
is treated as a network of rigid-rod chains whose configurational entropies are disre-
garded compared to their mechanical energies. The concept of rigid-rod networks was
suggested in (8-11). This approach is applicable when µ >> kBTN, where µ is the
rigidity per bond, T is the absolute temperature, N is the average number of strands
in a chain and kB is Boltzmann's constant (10).

The following hypotheses are introduced:

1. A chain is treated as an ensemble of rigid (inextensible) rods connected in se-
quence and linked by bonds (10).
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2. Two possible conformations are ascribed to a bond: flexed (trans) and extended
(cis) (12).

3. In the equilibrium stress-free state, all bonds are in the flexed conformation.
Under straining, some bonds change their conformations with the rate which is
determined by the laws of thermodynamics.

4. The mechanical energy of a chain equals the sum of the strain energies of bonds
with the flexed conformation (which are treated as linear elastic solids).

Conventional theories for fracture of rubbery polymers explain this phenomenon by
uncoiling of long chains, their pullout (slippage of junctions with respect to the bulk
material), bond scission (5,13), as well as by the growth of voids and formation of
crosslink density gradients (14). With reference to observations demonstrating a sub-
stantial increase in the number of free radicals in the sub-fracture region (15,16), we
postulate that bond scission is the main mechanism for failure of elastomers (13).
By analogy with (5), slippage of junctions is disregarded, which is tantamount to
the affinity hypothesis for deformation of polymeric networks. Pullout of chains and
friction between them are neglected because these processes are important only in the
close vicinity of crack fronts (17) and interfaces in polymeric blends (18). Uncoiling of
chains is taken into account implicitly by means of a parameter η which characterizes
end-to-end elongation of a chain induced by transition of a bond from its flexed to
extended conformation. We concentrate on the catastrophic regime of fracture [when
breakage of chains results in the formation of a crack percolating a specimen (19)]
and assume that failure occurs when the strain per bond reaches its critical value ∆.
This hypothesis may be treated as the deterministic version of the fiber bundle model
(20,21). The critical strength per bond is defined as

where Me is the average molecular weight between entanglements.
The effects of crosslink density and temperature on the ultimate strength of rub-

bery polymers have been recently studied in experimental works which concluded in
rather controversial results. For example, Refs. (22,23) demonstrate that the fracture
energy decreases with crosslink density, Ref. (24) reveals that the tensile strength
increases with the number of crosslinks, whereas Refs. (5,6) show that toughness
is a nonmonotonic function of the crosslink density with a maximum point. As an-
other example, we refer to Refs. (6,25) which demonstrate that the ultimate strength
decreases with temperature, and to Ref. (26) which reveals a nonmonotonic depen-
dence of strength on temperature (experimental data are replotted in Fig. 1). These
contradictions may be ascribed to different procedures of measurement for the ulti-
mate strength, on the one hand, and to the fact that the conventional parameters
explicitly associated with failure (elongation to break, maximum stress, toughness)
are oversimplified characteristics of the fracture process, on the other.

We aim (i) to develop a molecular model for the mechanical response and fracture
of elastomers, where rupture of a chain occurs when the strain per bond reaches its
ultimate value ∆, (ii) to find adjustable parameters in the constitutive equations by
fitting observations depicted in Fig. 1 and (iii) to demonstrate that the ultimate
strength Σ monotonically changes with temperature and molecular weight Mw.

Deformation of a long chain

A linear polymer is thought of as a network of rigid-rod chains connected to permanent
junctions (chemical crosslinks and entanglements). With reference to the Kratky-
Porod model (11), a chain is treated as an aggregate consisting of N + 1 identical
inextensible strands linked in sequel. A bond bridging two neighboring strands is
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characterized by one of the two stable conformations: flexed and extended. In the
stress-free state the angle between two neighboring strands linked by a bond with the
flexed conformation equals θ ∈ (0, π) (the same for all bonds) and that for a bond with
the extended conformation is π [see Fig. 1 in Ref. (10)]. In thermal equilibrium before
deformation all bonds are in the flexed conformation. Mechanical loading activates
chains, which results in changes in conformations of some bonds. The numbers of
bonds with flexed and extended conformations, Nf and Ne, obey the balance law
Nf + Ne = N. Introducing the ratio, n, of bonds with the extended conformation to
the total number of bonds, n = Ne/N , we find that

In a deformed state the angle between strands linked by a bond with the flexed
conformation alters, whereas for a bond with the extended conformation (modeled
as two rigid rods directed along a straight line) this angle remains unchanged. The
strain, e, from the stress-free state of a chain to its deformed state equals the sum of



218

strains for bonds with the flexed conformation, e = Nfef, which implies that

Bonds with flexed conformations are modeled as linear elastic solids with the mechan-
ical energy ½µef

2, whereas the strain energy of bonds with the extended conformation
vanishes. The mechanical energy of a chain, w, equals the sum of the mechanical
energies for individual bonds. It follows from Eqs. (2) and (3) that

To express the strain for a chain, e, in terms of the macro-strain tensor for the network,
∈^, we consider  a chain which has a small end-to-end length δ and which is directed
along the unit guiding vector l̄  in the stress-free state. The end-to-end vectors for the
chain in the reference state, R0, and in the deformed state at time t ≥ 0, R(t), are
given by (27)

where r is the radius vector of a point in the deformed state, ∇0 is the gradient
operator in the stress-free state, the dot stands for inner product and T denotes
transpose. The end-to-end length of the chain, ds, reads ds2 = R · R, which together
with Eq. (5) implies that ds0 = δ and ds(t, l) = δ [l · C(t) · l]½, where C(t) = ∇0r(t) ·
[∇0r(t)]

T is the Cauchy deformation tensor for transition from the stress-free state
of the network to its deformed state at time t. The extension ratio λ(t, l) is defined
as the ratio of the current end-to-end length, ds(t, l), to that of the chain in its
"activated" stress-free state, ds°(t, l). The latter state is defined as a state of the
chain which is suddenly unloaded, but for which the numbers of bonds with various
conformations coincide with their current values, Nf(t) and Ne(t). It differs from
the equilibrium stress-free state where the numbers of bonds with the flexed and
extended conformations equal Nf = N and Ne = 0. The difference between the
end-to-end lengths of a chain in the activated state, ds°(t, l), and in the equilibrium
state, ds0, determines the end-to-end elongation driven by transition of bonds from
the flexed to extended conformations. We assume the transformation-induced end-
to-end elongation to be proportional to the number of bonds acquiring the extended
conformations, ds°(t, l) = δ + Nn(t, l)δ0, where δ0 is an increment of the end-to-end
length driven by an individual transition. It follows from these equalities that the
Hencky strain for a chain, e = ln λ, reads (η = Nδ0/δ)

Strain energy density of a network

We adopt the conventional assumption that the excluded-volume effect and other
multi-chain effects are screened for an individual chain by surrounding macromolecules.
This implies that the energy of interaction between chains may be neglected (under
the hypothesis of incompressibility) and the mechanical energy of the network equals
the sum of the mechanical energies for individual chains. Assuming the distribution
of chains with guiding vectors l to be isotropic, we multiply the number of chains (per
unit mass) with guiding vector l by their mechanical energy, w, sum the results for
various guiding vectors, l, and find the mechanical energy of the network
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where ϑ and ϕ are Euler's angles which determine the position of the unit vector l
and Ξ is the number of chains per unit mass. Differentiation of Eq. (7) with respect
to time results in the formulas (simple algebra is omitted)

where D(t) is the rate-of-strain tensor for the network, F(t, l) = [∇0r(t)]
T · (l ⊗ l) ·

∇0r(t) is the generalized Finger tensor, the colon stands for convolution and ⊗ denotes
tensor product.

Constitutive equations

Observations evidence that the temperature increment at straining is rather small,
which implies that temperature T remains close to its reference value T0. This means
that the effect of temperature on material parameters, as well as thermal expansion of
the network may be disregarded. For affine deformation of an incompressible network,
the Clausius-Duhem inequality reads (28)

where ρ is mass density, q is the heat flux vector, σd is the deviatoric component of
the Cauchy stress tensor σ, Ψ is the free (Helmholtz) energy, S is the entropy and Q
is the entropy production per unit mass. The free energy is given by

where S0 and ψ0 are the entropy and the free energy in the equilibrium stress-free
state at the reference temperature T0 and c is the specific heat. The second and third
terms on the right-hand side of Eq. (10) characterize the energy of thermal motion.
Substitution of Eqs. (8) and (10) into Eq. (9) yields

Applying the conventional reasoning (28) to Eq. (11), we find that the expressions in
braces vanishes, which results in the formula for the Cauchy stress tensor

where P(t) is pressure and G = ρµΞ/(4πN). It follows from Eqs. (8) and (11) that the
rate of the entropy production is nonnegative for an arbitrary loading program, pro-
vided that (i) the heat flux vector q obeys the Fourier law q = −κ∇T with a positive
thermal diffusivity κ and (ii) the function n(t, ϑ, ϕ) satisfies the kinetic equation

where α is an adjustable parameter.
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Uniaxial tension of a specimen

At uniaxial extension of an incompressible specimen, Cartesian coordinates in the
actual state, xi, are expressed in terms of the Cartesian coordinates in the stress-free
state, Xi, by the formulas

where k = k(t) is the extension ratio. Bearing in mind that the functions n = n(t, ϑ)
and e = e(t, ϑ) are independent of ϕ, we calculate the integral over ϕ in Eq. (12)
explicitly, introduce the notation z = cos ϑ, e~ (t, z) = e(t, ϑ), ñ(t, z) = n(t, ϑ), and find
the longitudinal stress

It follows from Eq. (6) that

For a tensile test with a constant rate of engineering strain ∈•

0, k(t) = 1 + ∈•

0t, Eq. (13)
reads (a = α/∈•

0)

Validation of the model

Equations (14) to (16) are determined by three adjustable parameters, E, a and η,
which are found by fitting stress-strain curves for ethylene-octene copolymer CGCT87
(26). The parameters a and η are determined by the steepest-descent procedure and E
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is found by the least-squares technique. Results of numerical simulation are depicted
in Fig. 1. To calculate Σ, we determine the parameter γ = emax/(1 − ñmax), where emax

and ñmax coincide with e and ñ at the breakage point (∈ = ∈max) found by integration
of Eqs. (14) to (16) at ϑ = 0 (maximal strain is reached for chains directed along
the elongation axis). Multiplying E by γ and using Eq. (14), we find the quantity
Eγ = ½ρµΞ∆. Bearing in mind that Ξ = Me

-1 and utilizing Eq. (1), we obtain
Σ = 2Eγ/ρ. The quantities E, Σ, η and a are plotted in Figs. 2 and 3 as functions
of molecular weight Mw.

Discussion and conclusions

A model has been derived for the isothermal stress-strain response and fracture of
elastomers. Adjustable parameters in the constitutive equations are found by match-
ing observations for ethylene-octene copolymer. The essential advantage of our model
compared to the slip-link theory (29) and its modifications (30) is that it contains
fewer experimental constants and ensures fair agreement between experimental data
and results of numerical simulation up to the rupture point (Fig. 1), whereas the
conventional approach fails to correctly describe observations at ∈ ≥ 6 [Fig. 13 in Ref.
(29)]. It is demonstrated that

1. Young's modulus E increases with molecular weight (which is associated with
the growth in the number of entanglements) and decreases with temperature
(which confirms the applicability of the concept of rigid-rod networks, because
conventional theories of rubber elasticity imply an increase in elastic moduli
with temperature),

2. the critical strength per bond decreases with temperature [in agreement with
conventional observations (6,25)] and increases with molecular weight,

3. the rate of transformation from the flexed to extended conformations of bonds,
a, decreases with temperature (a decrease in the rigidity per bond, µ, results in
a decrease in its mechanical energy with temperature and makes the trans-cis
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transition energetically unfavorable) and grows with molecular weight (except
for polymers with low molecular weight),

4. the parameter η decreases with molecular weight at low temperature, T = 0,
and increases at high temperature, T = 40 °C, which may be explained by the
fact that at low temperatures neighboring chains prevent unrolling of individual
macromolecules, while at high temperatures the effect of environment weakens.

Acknowledgement: Financial support by the Israeli Ministry of Science through grant
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